

Detector Support Group We choose to do these things "not because they are easy, but because they are hard". Weekly Report, 2023-02-28

<u>Hall A – ECAL</u>

<u>Marc McMullen</u>

- Continued the current ECAL heater test at 92 W using 2" of insulation
 - * Front flange temperature is controlled to 250° C
 - * The crystal face temperature has peaked at 182° C
- Completed reviewing the second version of the heater; ordered 15 heaters for testing
- Reviewed issues with the current Hall A six-supermodule test
 - ★ Heaters were not controlled or monitored
 - * Supplemental heating (heat tape) also not monitored or controlled
 - * Provided guidance on how the DSG test stand is monitored and controlled

<u>Hall A – GEp</u>

Mindy Leffel

• Terminated two high voltage, Fischer, 27-pin connectors

<u>Hall A – Møller</u>

Mary Ann Antonioli and Brian Eng

- Began a new Phoebus screen for magnet #2 temperatures, using Phoebus graphics based on a new AutoCAD drawing
 - ★ On first screen, a picture was used for the graphics, which becomes blurry when zoomed in
 - ★ Because Phoebus drawing tools are hard to use, the AutoCAD drawing is made first so the Phoebus line coordinates can be based on the AutoCAD coordinates

<u>Hall A – SoLID</u>

Pablo Campero

• Added email notifications to email system for changes of state cooldown, warm gas CD running, bottom fill enabled, and enable level control

<u>Hall B – Magnets</u>

<u>Brian Eng</u>

- Still dealing with Rockwell Automation tech support to get them to review the log files
 - * Still requiring photos of labels, which can only be accessed when the system is apart
 - ★ Unlikely to get any support

<u>Hall C – NPS</u>

Mary Ann Antonioli, Peter Bonneau, Aaron Brown, Pablo Campero, Brian Eng, Mindy Leffel, and Marc McMullen

• Made five Phoebus screens for the alarm system tests—four crystal zone screens and one for crystal zone cooling

Detector Support Group

We choose to do these things "not because they are easy, but because they are hard". Weekly Report, 2023-02-28

- * Assessing methods of testing the screens before the implementation of the EPICS softIOC
- Terminated one 50-conductor cable; 11 of 12 completed
- Developed Python script to test Keysight extension cables, which automatically tests 40 channels at a time, taking 500 temperature and voltage readings per channel, and saving data to a .csv file
- Reviewed the Phoebus LED control screen
 - ★ Needs user-settable fields for pulse width and pulse amplitude
 - * May need to make separate sreens for bleaching and pulsing
- Troubleshooting cRIO; project wouldn't run or deploy when trying to do it manually, only the startup application worked

<u>Hall D – JEF</u>

Mindy Leffel

• Wrapped 33 crystals with 3M foil and Tedlar

EIC

Brian Eng, Pablo Campero, and Marc McMullen

- Started re-assembling controls for the beamline test
- Researching aerogel for insulating the test stand
- Ran thermal simulation of model with 5 mm between beampipe and silicon sensor and with 1 mm of aerogel insulator

Detector Support Group We choose to do these things "not because they are easy, but because they are hard". Weekly Report, 2023-02-28

Right side view of silicon sensor with air flow velocity at 1*10⁻⁷ m/s

Right side view of silicon sensor with air flow velocity at 1 m/s

EIC-DIRC

Tyler Lemon

- Repeating Altium simulation for interlock circuit using programmable voltage sources in place of circuit inputs, allowing inputs to be toggled at specific times to mimic a user pressing the sweep button, reset button, or triggering an interlock
 - Debugging voltage source programming as sources do not consistently behave as expected and work at random

DSG Website

Peter Bonneau

• Revised the main <u>DSG website page</u> and added additional content